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Abstract. We propose an approach oriented to generate an explicit representa-
tion of the geometric characteristics of geospatial data. Our methodology is
based on a conceptualization of a geospatial domain. The concepts are ex-
tracted automatically by analyzing the properties of geospatial objects Also the
concepts are stored in the spatial database to support subsequent processing.
The conceptualization of geometric properties is based on measurements of
geospatial objects. The results of this measurement are classified to obtain rep-
resentative clusters of values in order to describe these properties. The values
are used to define which concept better represents the properties of each object.
We consider different geometric characteristics in a particular case study, such
as rivers. Then, the characteristics that we have considered are the following:
sinuosity, length, slope, and course. By using this method, we attempt to catch
the semantics that contains geospatial data in the geometric context.

1 Introduction

This research has as main purpose to design a Geographic Information System (GIS)
oriented to explicitly represent the geometry of geospatial data. The explicit represen-
tation is based on the conceptualization of the geometric properties. This is repre-
sented by means of concepts that describe different geometry. To quantify the charac-
teristics, different measurements are computed to make a conceptualization.

In this paper, we present a conceptualization oriented to generate ontological in-
formation and thus structure or homogenize the databases. We are looking for a for-
mat of data representation, which does not depend on scale, format, references, etc.
According to [2] a body of formally represented knowledge is based on a conceptu-
alization: the objects, concepts, and other entities that exist in some area of interest
and the relationships that hold among them. A conceptualization is an abstract, sim-
plified view of the world that we wish to represent for some purpose [3].

Ontologies encode semantic relations between concepts and hence facilitate the de-
tection of associations between related terms. In modern information systems based
on ontologies, one seeks canonical descriptions of knowledge domains and associated
classificatory theories.

Traditionally, geographic data models usually explicitly represent a set of basic ob-
jects, their geometry and their properties. But much of the geographic world’s seman-
tics appears in the relations linking objects [12] [8]. Nevertheless, most of these rela-
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tions are not explicitly represented in data models describing geographic databases.
Usually, these relations only implicitly appear when one is looking at a display of a
geographic database [7]. Geographic Information Systems (GIS) handle geo-spatial
data at different levels of details. Due to page limit our literature overviews stopped at
this point.

In this work, we generate a conceptualization of geometrical properties of geospa-
tial objects and explicitly represent them into spatial databases. The paper is organ-
ized as follows: Section 2 describes the measurements to quantify the geometric char-
acteristics. Additionally, Section 3 points out the conceptualization method. Some
preliminary results are shown in Section 4, and Section 5 sketches out our conclusion
and future work.

2 Conceptualization of geometrical characteristics

This research has as main purpose to design a Geographic Information System (GIS)
oriented to explicitly represent the geometry the geospatial data. The explicit repre-
sentation is based on the conceptualization of the geometrical properties (See Fig.1).
The conceptualization of geometrical properties is based on measurements of geospa-
tial objects. The values obtained by the measurements are classified to obtain repre-
sentative clusters of values in order to describe these properties. The values are used
to define which concept better represents the properties of each object.
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Fig. 1. Process to generate concepts explicitly represented

2.1 Measures

The necessity to measure is evident in most of the technical or scientific activities.
Nevertheless, it does not only interest to count on measurements, but also to know if
these measurements are valid. The validity of the measurement in any technical or
scientific discipline is based on the respect to the principles of the general theory of
the measurement (in particular, we will lean in the call representational theory of the
measurement). The foundation of the representational theory consists of which all
measurement must assure a suitable representation of the real attribute measured by
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means of the symbols or assigned numbers. Additionally, the relationships should be
preserved among this entity.

In order to establish measurements, we must divide our observation of the real
world or dominion. We must identify which are the organizations that we want to
measure (e.g., river) and to define what attribute we wished to characterize (e.g., the
sinuosity). The measurement assigns a value to each organization to characterize its
attribute (e.g., the river S3 has a sinuosity of 2.75). The most important is that the
measurement that we establish is not inconsistent with the relations observed in the
real world.

It is important to consider that not always the ideas on the attributes are so clear.
We can begin by simple subjective valuations (e.g., to use questionnaires where they
are classified or orders the opinions of the experts on an attribute), that do not consti-
tute measurements from the point of view of the theory of the representation, but that
they can be analyzed to improve the understanding on the real world. It is possible
that after accumulating data of this type, it is necessary to be obtained to define a
formal measurement. An allocation that settles down between real world and values
of measurement usually is denominated measurement scale.

To study with detail the geometry of the spatial objects different simple algorithms
should be developed, in order to reflect in some aspects the basic characteristics of
the geometry. For example, in the generalization of a hydrological network some such
geometric problems exist as lines that you angular and they lose detail, as well as
nodes that are displaced as is shown in Fig. 2. In the generalization of a map, it takes
to those contradictions exist between the demands of geometric accuracy and the
geometric coincidence. The geometric exactitude of a map presupposes that each
object of the terrestrial surface is exactly represented in the map in the same place
with its true plane contours and dimensions, conserving the positions of all the ob-
jects and the distances that overcome them, correctly of agreement with the scale of
the map.

Scale 1:2,000,000 Scale 1:25,000,000

Fig. 2. Generalization of hydrological network

This reason is important to analyze, the change that occurs in the geometric form
in to the objects. A form to make this process is by means of the measurement. In
other works, this is the base of value the geometric characteristics in the generaliza-
tion. In the Technical Annex of the project AGENT a classification of geometric
measurements is shown and it is focused on the generalization. With this classifica-
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tion will be carried out measurements of the geographical objects with the purpose of
obtaining a conceptualization, guided to evaluate the result of the generalization.

In conclusion the measurements are numeric values assigned to an observation that
reflects a magnitude, quantity or a characteristic. For this reason, we can make meas-
urements according to their geometric form.

3 Methodology

The explicit representation is based on the conceptualization of the geometrical prop-
erties. This method does not depend on the scale as the traditional GIS approaches. In
the following subsections, we outline our methodology.

3.1 Methodology of geometrical conceptualization

In our model, the geometry of geospatial objects will be described by means of con-
cepts that represent geometrical properties, such as size, sinuosity / complexity, elon-
gation / eccentricity, compactness, as well as other important aspects. We consider
three types of geospatial data; point-like objects (i.e. well or tree), linear objects (i.e. a
road or river) and the area objects (i.e. state boundary or lake).

The conceptualization process consists of four steps: (1) to obtain the measure-
ments, we use algorithms that evaluate geometric characteristics. Fig. 3 shows a clas-
sification of measurements. Shape describes the geometric representation of spatial
objects according to [11].
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Fig. 3. Classification of Measures
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(2) The obtained values by the measurements are classified to generate representa-
tive clusters of values in order to describe the geometric characteristics in a qualita-
tive way (3) each cluster will be used to assign a concept according to the classifica-
tion of intervals of the measurements (see Table 1). Fig. 4 depicts a workflow dia-
gram of the conceptualization process.

Table 1. Mapping between the obtained values of a measurement and the concept

Spatial representation Range Concept
(measure)
— 1-14 Straight
/\/ 1.5-2.0 Little sinuous
[W 21— 2.4 Half sinuous
/\[\W 25-35 Very sinuous

Measures to E:> Classification Assignment
ohjects in intervals of concepts

Geo-spatial data

Fig. 4. Workflow diagram to obtain the conceptualization

3.2 Methodology of geometrical conceptualization of rivers

In this investigation was carried out the conceptualization of rivers by means of meas-
urements (e.g. length, sinuosity, heights, trajectory and address of rivers), the values
obtained by the measurements are classified in intervals, assignment of concepts
according to the classification of intervals of the measurements.
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3.2.1 Compute of length measurements

The length measurement (L), it is obtained by the equation 1, which is computed by
the shortest distance between a point and a straight line is perpendicular one to this
straight line that goes to that point. In other words, if we think of vectors instead of
lines, it would be the vector that goes to the point of measurement of the distance that
maintains a product to climb = 0.
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Fig. 5. Compute of length measure

3.2.2 Compute of sinuosity measurement

In the case of sinuosity measurement (S), it is obtained by the equation 2, which is
computed by dividing curve length with Euclidean distance from the initial node d, to
the terminal node N (P(dy,N)) (See Fig. 6a).

For example, S for different lines (Lo, L;) is S(Ly) = 1.0034 and S(L;) = 3.3905. It
means that this property will be represented by the concepts straight and very sinuos-
ity respectively (See Fig. 6b).

«—curve length

. . Curve length
Sinuosity :7P(dn,Né)
AN
\//// T\ Euclidean distance
da
a)
Classification of S Concept
1.0-14 Straight
1.5-2.0 little sinuous
21-24 half sinuous
2.5-3.5 very sinuous
b)

Fig. 6. Compute of sinuosity measurement
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3.2.3 Compute of heights, trajectory and address of rivers Measure

The slope of the land is computed by starting from the gradient of heights among
neighboring cells (Fig 7a). The line of flows describes the address of the glides of
water in the surface (Fig 7b), following the trajectory of more slope. To code the
address of the glide, a code is assigned to each cell, among a total of 8 different val-
ues; each value represents the orientation of the cell, following the sketch: E=I,
SE=2, S=4, SW=8, W=16, NW=32, N=64, NE=128 (Fig. 7c).
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Fig. 7. Compute of heights, trajectory and address of rivers
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3.2.4 Classification in subsystems

To carry out a classification in everything the one laughed it is necessary to make a
grouping for subsystems, a subsystem is the group of rivers defined by a watershead,
each one of these areas will be denominated by an unique badge, for what we will
have several subsystems in a group of rivers.

Horton in [4] and [5] introduced a concept of classification of streams that allows
assigning whole values to streams in hydrological networks that determine their rela-
tive importance in a hierarchy of tributary bigger and smaller. An improved version
of this concept was introduced later in [10]. The network is integrated by a main
channel and a series of tributary whose ramifications extend from the highest parts
toward the lowest parts where the glides converge [1] [9]. Fig. 8 shown a group the
rivers in subsystems, with a classification of streams applying the hierarchical scheme
of Horton and Strahler (HS).

— Orden 1
= Orden 2
== Orden 3

Fig.8. Classification of streams with the outline of Horton and Strahler

Once the rivers are classified in subsystems, the measurements are computed, corre-
sponding with their sinuosity, length, order of the flowing (hierarchical class), and the
range of heigths.

4 Experimental results

To obtain the measurements, we have been developed in language AML (Arc Macro
Language), a set of programs to obtain the geometric characteristics. In Fig. 9, a
fragment of drainage network is depicted. It is composed of lineal elements, these
lineal elements possess the characteristics of any other drainage network.
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Fig. 9. Proposed drainage network

Fig. 10 (a) depicts the computation of sinuosity measurement for the Rivers. In
addition, Fig. 10 (b) shows the compute of length measurement for the rivers.
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Fig. 10. (a) Sinuosity measurement, (b) Length measurement

The process of altitudes assignment, involves the use of the layer that contains the
altitudes of that area, which is required to assign the heights to the nodes and later on.
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This layer is used to extract the information on the altitudes. Fig. 11 depicts the com-
putation of heights for the rivers.
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Fig. 11. Compute of heights of rivers

Fig. 12 depicts the classification of subsystems for the Rivers. This classification
provides the measurements for subsystems and to make comparison of results later

on.




Spatial Analysis to Generate a Conceptualization of Geometric Properties 131

D2 Viewl _ o]

o] Subsistemas 1= 5
2
% 3 /_/
4

Fig. 12. Classification in subsystems

The following step is the conceptualization. The conceptualization process will be
performed by a mapping between the range of values and the concept. In this case,
the range of values represents a concept. The representative intervals are defined in
the classification (for example, in the case of sinuosity a line can be little, half, very
sinuous). The values and concepts are different according to the case study. In other
words, each thematic should be represented by different intervals or concepts. Fig. 13
shows the mapping between the value of a measurement and the concept. This is
defined by means of intervals (ranges).
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Fig. 13. Mapping between the obtained values of a measurement and the concept

It is important to mention that the generated concepts are not ambiguous, because
they only can be applied in a specific context (geometric shape), i.e. it is different the
sinuosity of highways that the sinuosity of rivers or elevation contour lines.

5 Conclusions and Future Work

In this work an approach to incorporate semantic content into Geographic Informa-
tion Systems has been presented. The semantic data content is expressed by concepts.
These concepts are generated analyzing the datasets in a specific geographic domain,
and represented by concepts. The concepts represent the interpretation, and the mean-
ing of geospatial objects. Our method is based on explicit representation of geometri-
cal properties of geographic data by means of concepts. By using this approach, we
attempt to catch or dimension semantic contents, which implicitly contain the spatial
data and do not depend on the scale. In addition, it is possible to hierarchize the ob-
jects according to geometric characteristics.

In the future work we will measure the semantic similarity among different geo-
spatial datasets. In our opinion, a domain conceptualization is useful to build ontolo-
gies, which represent (globally) the context of that domain, while the vocabulary of
concepts and its relations describe the semantics (locally). Ontologies are very useful
since they add a semantic component (the relations between different concepts),
which normally is not considered in traditional GIS approaches.
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